用户名: 密码:  用户登录   注册  忘记密码  账号激活
您的位置:教学资源网 > 教研天地 > 阅读文章

从各版课标教材的比较谈初中函数教学

阅读:2523 次  我要评论(0)  收藏  2012/5/18 16:51:03
分享到:
学生理解和掌握概念的过程实际上是掌握同类事物的共同、本质属性的过程,概念形成和概念同化反映了学生掌握概念的两种不同心理过程。根据中学生的认知特点,掌握概念的方式,应更多的采用概念形成,即从典型、丰富的具体例子出发,学生经过自己的实践活动,从中归纳、概括出一类事物的共同本质特征,从而理解和掌握概念。为了帮助学生形成函数概念,教学中要注意“举三反一”——通过给学生大量客观世界中反映这种变化规律的实例(解析式的、图象的、表格的),让学生经历“发生发展过程”,为学生提供独立概括概念的机会,经过分析、综合、比较而概括出函数概念“单值对应”的本质属性。在此基础上,再“举一反三”——用学生得到的函数概念再去看其他的对应问题,是不是符合函数概念的“单值对应”。在这一过程中,要注意恰当地使用反例,巩固学生对于函数概念的理解。
 
同样,对于特殊的函数(如正比例函数、一次函数、反比例函数、二次函数等),也要注意把握其概念的核心,注意概念的形成的教学。理解概念是一切数学活动的基础,学生的概念理解不清就无法进一步学习相关内容。对于函数概念教学的重要性要有充分的认识,要舍得花时间、花力气。
 
2.加强研究函数的一般方法的引导
 
如前所述,对于函数这部分内容,各个版本课标教材都是按照从一般到特殊的线索展开,对于一般函数,要研究它的概念、表示法、图象等;对于特殊函数,要研究它们的概念,图象和性质以及其他一些相关问题。仔细比较各个版本的教材,可以发现教材对于各个部分内容的处理思路、呈现方式也是基本一致的,其中存在着很多研究方法的联系。
 
例如,对于反比例函数概念的教学,大多经历这样的过程:从一些具体实例引入(包括匀速运动路程固定,速度与时间的关系;商品总价固定,单价与商品数量的关系;长方形面积固定,长与宽的关系;等等);让学生概括其中的共同本质特征(函数关系,反比例关系);下定义(给出反比例函数的文字和符号描述);辨析概念(从反比例关系、函数两方面辨析概念,注意反例的使用);例题(给出用概念作判断的操作步骤);反思(与正比例函数、一次函数作比较,纳入概念系统)等。这个过程实际上体现了概念教学的几个基本环节:
 
?           概念的引入(从数学概念体系的发展过程或解决实际问题的需要引入)
?           概念的形成(提供典型丰富的具体例证,概括其本质属性)
?           概念的明确(准确的数学语言描述概念的内涵与外延)
?           概念的表示(用数学符号表示,这是数学概念的特色)
?           概念的巩固和应用(以实例(正例、反例)为载体分析关键词的含义,应用概念作判断)。
 
     来源:教学资源网  编辑:songweiwei  返回顶部  关闭页面  
  • 暂时没有相关评论