用户名: 密码:  用户登录   注册  忘记密码  账号激活
您的位置:教学资源网 > 教研天地 > 阅读文章

深入理解课标教材 努力提高教学质量

阅读:2835 次  我要评论(0)  收藏  2012/5/18 16:39:09
分享到:
4.概率内容的处理
了解概率的意义,是课标的要求,不同的教材对概率定义的处理方式有所不同。人教版课标教材修订前后对概率的意义的处理也不相同,修订前教材是“先介绍用频率估计概率,再讲简单事件的概率计算”,修订后是“先讲简单事件的概率计算,再介绍用频率估计概率”。为什么要做这样的改动呢?
在概率论的历史上,人们曾经从不同角度、在不同层次上给出概率的定义。这包括古典概率定义,几何概率定义、概率的频率定义、概率的公理化定义等。这四个定义,体现了概率定义“从简单到复杂、从特殊到一般、从具体到抽象”的逐步变化,也反映了人们对概率的认识所经历的过程。、
修订前教材中从掷硬币试验说起,是想借助具体问题说明频率的稳定性,引出概率的频率定义。但是实际教学中,学生对此的理解却存在较多障碍。由于频率是随机的,而概率是一个客观存在的常数,试验中出现频率与概率的偏离程度较大的情形是可能的,这是随机现象的特性。为什么大量重复试验中频率会稳定?是稳定在一个常数附近还是在一个范围?这个常数为什么是0.5,而不是0.5001或0.4999?类似这样的问题学生理解起来是很困难的。修订后教材改变了顺序,先从掷硬币试验仅有两个结果说起,再分析硬币质地均匀使得两个结果出现的机会均等,这是客观的、有道理的,从而使学生较容易地接受了正面向上的可能性是0.5。然后再说明大量重复试验会反映客观规律,而规律是合乎道理的,从而进一步解释在一般情形下频率的稳定性,引出概率的频率定义。这种做法使得教学过程顺利得多,学生对试验中出现的频率偏离概率的现象也能接受了。
三、对于一些具体问题的讨论
1.有理数乘法
对于有理数的乘法,不同的教材有不同的处理方式,有的直接是“规定”;有的采用“归纳”的方法,利用一些特殊值,从“正×正”到“正×负”再到“负×负”。在有理数的乘法中,对于“正×正”“正×负”“负×正”不难理解,问题的焦点在“负负得正”上。有理数的乘法法则可以说是一种“规定”,但是这种“规定”是有其合理性的,其核心就是要在正有理数扩充到全体有理数后,其运算律(特别是分配律)保持不变。例如,要使分配律保持不变,就必须有
(-3)×(-5)
=(-3)×(0-5)
=(-3)×0-(-3)×5
=0-(-15)
=15

这也就是“负负得正”。

     来源:教学资源网  编辑:songweiwei  返回顶部  关闭页面  
  • 暂时没有相关评论