2.空间与图形
1)图形的认识
考试内容:
点、线、面与角、相交线与平行线、三角形、四边形、圆、尺规作图、视图与投影。
考试要求:
(1)在实际背景中认识及理解点、线、面、角的概念。
(2)会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。
(3)掌握角平分线性质定理及逆定理。
(4)了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。
(5)了解垂线、垂线段等概念,会用三角尺或量角器过一点画一条直线的垂线。了解垂线段最短的性质,理解点到直线距离的意义。
(6)知道过一点有且仅有一条直线垂直于已知直线。
(7)掌握线段垂直平分线性质定理及逆定理。
(8)了解平行线的概念及平行线基本性质,
(9)掌握两直线平行的判定及性质。
(10)会用三角尺和直尺过已知直线外一点画这条直线的平行线。
(11)体会两条平行线之间距离的意义,会度量两条平行线之间的距离。
(12)了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高。
(13)掌握三角形中位线定理。
(14)了解全等三角形的概念,掌握两个三角形全等的判定定理。
(15)了解等腰三角形、直角三角形、等边三角形的有关概念,掌握等腰三角形、直角三角形、等边三角形的性质和判定定理;
(16)掌握勾股定理,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。
(17)了解多边形的内角和与外角和公式,了解正多边形的概念。
(18)掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。
(19)掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和判定定理。
(20)了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心)。
(21)通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。
(22)理解圆及其有关概念,了解弧、弦、圆心角的关系,了解点与圆、直线与圆以及圆与圆的位置关系。
(23)理解圆的对称性,理解圆周角与圆心角的关系、直径所对圆周角的特征,会用垂径定理进行简单的推理与证明。
(24)了解三角形的内心和外心。
(25)了解切线的概念,会用圆的切线的性质定理和判定定理进行简单的推理与证明,会过圆上一点画圆的切线。
(26)会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。
(27)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线。
(28)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。
(29)能过一点、两点和不在同一直线上的三点作圆。
(30)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。
(31)会画简单几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图)的示意图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。
(32)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型。
(33)了解基本几何体与其三视图、展开图(球除外)之间的关系;知道这种关系在现实生活中的应用(如物体的包装)。
(34)了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。
(35)知道物体阴影的形成,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下,观察手的阴影或人的身影)。
(36)了解中心投影和平行投影,了解视点、视角的涵义。
2).图形与变换
考试内容:
图形的变换(轴对称、平移、旋转)、图形的相似、
考试要求:
(1)通过具体实例认识轴对称、平移、旋转,探索它们的基本性质。
(2)能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形。
(3)探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称(或平移、旋转)的性质及其相关性质。
(4)利用轴对称(或平移、旋转)及其组合进行图案设计;认识和欣赏轴对称(或平移、旋转)在现实生活中的应用。
(5)了解比例的基本性质,了解线段的比、成比例线段,通过实例了解黄金分割。
(6)通过实例认识图形的相似,了解相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。
(7)了解两个三角形相似的概念,会用两个三角形相似的性质定理和判定定理进行简单的推理与证明。
(8)了解图形的位似,能够利用位似将一个图形放大或缩小。
(9)通过实例了解物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。
(10)通过实例认识锐角三角函数(sinA,cosA, tanA),知道30,45,60角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角。
(11)运用三角函数解决与直角三角形有关的简单实际问题。