用户名: 密码:  用户登录   注册  忘记密码  账号激活
您的位置:教学资源网 > 教研天地 > 阅读文章

打好基础与启发思维训练能力

阅读:1032 次  我要评论(0)  收藏  2012/10/15 16:39:13
分享到:
二、数学是理性的科学,是理性思维的范例
我听说,有些中小学生把数学看成是背公式的学科,这完全是误解。固然,学习数学过程中记忆是必要的,有时还要记得熟,不假思索就能说出来,例如乘法的九九表等等。但数学是理性思维的科学,有严格逻辑结构的科学,对其中的每一项内容,应该不仅仅是知其然,而且要知其所以然。最简单的公式,都有它的来源,矩形面积等于两个边长之积,就是从测面积的经验中得出来的。有了这个经验事实做基础,然后就可以证明许多东西,所以可以论证三角形、平行四边形、梯形等等图形面积的公式。“勾三、股四、弦五”是勾股定理的~个特例,这样重要的定理一定要加以证明,它也可以利用计算面积得出(我国古代的证明比欧几里德几何原本中的证明简单得多)。数学是不满足于个别事物和现象的。又如说/2是无理数,开方许多步仍然没有完,没有出现循环的情况还不能说明问题,因为这许多步仍然是有限步,这件事作了严格的证明才能成立。论证的过程,也就是进一步理解的过程,揭示内在联系的过程,对学生来说,是提高数学素质的重要手段。只有懂了,才能记得牢固,即使忘了,也会自己推导出来。
三、数学是极富创造性的科学
数学的最原始对象自然数就是人类思维的创造,现实世界只有三头牛、四匹马等等,数字三、四就是从此抽象出来的。点和直线也是如此。整个数学发展的过程也就是新概念、新方法、新理论的创造过程。例如从自然数到整数、到有理数、无理数以及虚数都有重大的创造。恩格斯曾说过数学是研究思想事物的科学,这是很有见地的,因为它不像别的科学有特定的具体的物质对象,如分子、原子、地球、太阳、细胞等等。对于思想事物,只有不断创新才能发展出新的研究对象和方法,当然这种发展也是不断地从各种自然现象和社会现象中吸取营养而得到的。希腊学者研究天文学,创建了球面三角。牛顿的微积分研究是和力学的研究平行进行的。
无限是数学家的重大的创造,要凭想像力,同时也要有数学手段才能把握。没有这种概念,循环小数就无法理解,更不用说微积分了。无限有许多和有限不同的性质,会使人大感惊奇。对于几何来说,对无限的想像也是很有意思的。欧几平面不包括无限远点,但可以想像出无限远点,在射影平面上无限远点构成一条直线,在复平面,无限远点是一个点,这些经典事实说明数学的确是思维创造的广阔的空间。
     来源:教学资源网  编辑:songweiwei  返回顶部  关闭页面  
  • 暂时没有相关评论