在定理、性质、法则、公式、规律等的教学中要引导学生积极参与这些结论的探索、发现、推导的过程,不断在数学思想方法指导下,弄清每个结论的因果关系,最后再引导学生归纳得出结论。
例如,高一新教材,数学第一册(上)第三章数列,教师要不失时机地引导学生观察发现数列是特殊的函数,关于等差数列,由通项公式和求和公式看出,an和Sn都是n的函数,当d≠0时,an是n的一次函数,Sn是n的二次函数。因此可以用一次、二次函数的有关知识来解决等差数列的通项、前n项和的问题。函数的图象是函数的灵魂。an =a1 +(n-1)d的图象是一条直线上的点.Sn =na1 +d的图象是一条抛物线上的点,借助图形的直观,解决问题。
2.在小结复习的教学过程中,揭示、提炼概括数学思想方法
由于同一内容可蕴含几种不同的数学思想方法,而同一数学思想方法又常常分布在许多不同的基础知识之中,及时小结、复习以进行强化刺激,让学生在脑海中留下深刻的印象,这样有意识、有目的地结合数学基础知识,揭示、提炼概括数学思想方法,既可避免单纯追求数学思想方法教学欲速则不达的问题,又明快地促使学生认识从感性到理性的飞跃。例如,《数列》这一章,体现了函数与方程、等价转化、分类讨论等重要的数学思想以及待定系数法、配方法、换元法、消元法、“归纳一猜想一证明”等基本的数学方法。复习小结时可配合知识点和典型例题强化训练。
3.抓好运用,不断巩固和深化数学思想方法
分析:题设给出了数列相邻两项所满足的关系式(递推公式)和首项=1 ,由此可求出,从而可猜想出,由特殊到一般,灵活运用“归纳一猜想一证明”这一探究问题的思维方式猜想出结果(填空题可不必证明)。
如果注意到递推公式是关于和的二次齐次式,也可通过分解因式或解一元二次方程来解决,即灵活运用方程思想求得更简单的递推式,进而运用迭乘法迅速求得