系数法、配方法等。通过这些数学方法的使用,使学生充分领略数学思想在数学领域里的地位与作用。
2.中学数学中的基本数学方法
(1)数学中的几种常用求解方法:配方法、消去法、换元法、待定系数法、数学归纳法、坐标法、参数法、构造法、数学模型法等;
(2)数学中的几种重要推理方法:综合法与分析法、完全归纳法与数学归纳法、演绎法、反证法与同一法;
(3)数学中的几种重要科学思维方法:观察与试尝、概括与抽象、分析与综合、特殊与一般、比较与分类、归纳与类比、直觉与顿悟等。
四、数学思想方法教学途径的探索
1.在基础知识的教学过程中,适时渗透数学思想方法
在教学过程中,要注意知识的形成过程,特别是定理、性质、公式的推导过程和例题的求解的过程,基本数学思想和数学方法都是在这个过程中形成和发展的,数学基本技能也是在这个过程学习和发展的,数学的各种能力也是在这个过程中得到培养和锻炼的,数学思想和数学观念也是在这个过程中形成的。
(1)重视概念的形成过程
概念是思维的细胞,是感性认识飞跃到理性认识的结果。而飞跃的实现要经过分析、综合、比较、抽象、概括等思维的逻辑加工,需依据数学思想方法的指导。因而概念教学应当完整地体现这一过程,引导学生揭示隐藏于概念之中的思维内核。例如,高一新教材,数学第一册(上)第二章函数,有关函数的单调性的知识,是数形结合思想渗透教学的最好材料,教学中要充分抓住这一有利时机。函数f(x)在区间A上是增函数或减函数可直观地用下图示意:
通过图象的直观性,可使学生深刻理解函数的单调性,也使学生对增函数、减函数的定义有更加明确的认识。
(2)引导学生对定理、公式的探索、发现、推导的过程