考点一、实数的概念及分类
1、实数的分类
2、无理数
在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数,如sin60o等(这类在初三会出现)
判断一个数是否是无理数,不能只看形式,要看运算结果,如是有理数,而不是无理数。
3、有理数与无理数的区别
(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;
(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根
1、概念、定义
(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。如果,那么x叫做a的平方根。