1. (2015•淄博第8题,4分)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=
AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为( )
A. B. C. D.
考点: 相似三角形的判定与性质;三角形的面积;三角形中位线定理..
专题: 压轴题.
分析: 根据三角形的中位线求出EF=BD,EF∥BD,推出△AEF∽△ABD,得出=,求出==,即可求出△AEF与多边形BCDFE的面积之比.
解答: 解:连接BD,
∵F、E分别为AD、AB中点,
∴EF=BD,EF∥BD,
∴△AEF∽△ABD,
∴==,
∴△AEF的面积:四边形EFDB的面积=1:3,
∵CD=AB,CB⊥DC,AB∥CD,
∴==,
∴△AEF与多边形BCDFE的面积之比为1:(3+2)=1:5,
故选C.
点评: 本题考查了三角形的面积,三角形的中位线等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目比较典型,难度适中.