问题一
(1)河上有一座桥孔为抛物线形的拱桥,水面宽为6m时,水面离桥孔顶部3m.因降暴雨水位上升1m,此时水
面宽为多少(精确到0.1m)?
桥孔分析:解决这个实际问题,先要数学化——建立平面直角坐标系,将抛物线的桥孔看作一个二次函数的图像.
(2)一艘装满防汛器材的船,露出水面部分的高为0.5m、宽为4m.当水位上升1m时,这艘船能从桥下通过吗?
跟踪训练
闻名中外的赵州桥是我国隋朝工匠发明并建造的一座扁平抛物线形石拱桥,石拱桥跨径36m,拱高约8m.试在恰当的平面直角坐标系中求出与该抛物线对应的二次函数解析式.
练一练
1.下图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如下图).
(1)求抛物线的解析式;
(2)求两盏景观灯之间的水平距离.
2 .如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求这条抛物线的解析式;
(3)若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面 OM上,则这个“支撑架”总长的最大值是多少?
师生小结
课后作业
|
在老师的引导下思考:
1.新建立的平面直角坐标系怎么用简练的语言表达?
2.建立的方法有几种?哪种最简单?
积极思考,独立解答后互相讨论,由几位代表回答.
建立模型.
1.独立解答后分组交流.
2.全班交流.
(1)解题过程中有什么困难,解决得如何?
(2)通过解决这3个问题你有什么经验体会?
说说这节课主要的学习思路.
|
给学生一个现实的问题,激发学生学习数学的欲望.
让学生解决相近的问题,容易让学生独立完成,树立学习信心.
通过学生相互讨论使学生主动参与到学习活动中来,培养学生合作交流精神和发散思维能力,同时拓展学生的知识面.
三个问题有一定的难度,在独立解答结束后,为缓解学生紧张,调节学生心理,设计交流和谈心得的环节,让他们深度思考后在较轻松的氛围中归纳总结,畅所欲言,以提高课堂效率,保持对学习的热情.
总结用二次函数解决实际问题的一般思路,为以后解决类似问题打下伏笔.
|