方案设计
1. (2014•山东烟台,第23题8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年A型车每辆售价多少元?(用列方程的方法解答)
(2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A,B两种型号车的进货和销售价格如下表:
|
A型车
|
B型车
|
进货价格(元)
|
1100
|
1400
|
销售价格(元)
|
今年的销售价格
|
2000
|
考点:分式方程的应用,一次函数的应用.
分析: (1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.
解答:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得
,解得:x=1600.经检验,x=1600是元方程的根.