从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,任一个绝对值都是表示两个不同数的绝对值.即 一个数 与它相反数的绝对值是一 样的.由于这个性质,所以含有绝对值的方程与不等式的求解过程又出现了一些新特点.本讲主要介绍方程与不等式中含有绝对值的处理方法.
一个实数a的绝对值记作|a|,指的是由a所唯一确定的非负实数:
含绝对值的不等式的性质:
(2)|a|-|b|≤|a+b| ≤|a|+|b|;
(3)|a|-|b|≤|a-b|≤ |a|+|b|.
由于绝对值的定义,所以含有绝对值的代数式无法进行统一的代数运算.通常的手法是分别按照绝对值符号内的代数式取值的正、负情况,脱去绝时值符号,转化为不含绝对值的代数式进行运算,即含有绝对值的方程与不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析.