数名正弦余弦正切余切正割余割
在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有
正弦函数sinθ=y/r
余弦函数cosθ=x/
正切函数tanθ=y/x
余切函数cotθ=x/y
正割函数secθ=r/x
余割函数cscθ=r/y
正弦(sin):角α的对边比上斜边
余弦(cos):角α的邻边比上斜边
正切(tan):角α的对边比上邻边
余切(cot):角α的邻边比上对边
正割(sec):角α的斜边比上邻边
余割(csc):角α的斜边比上对边
0度
sina=0,cosa=1,tana=0
30度
sina=1/2,cosa=√3/2,tana=√3/3
45度
sina=√2/2,cosa=√2/2,tana=1
60度
sina=√3/2,cosa=1/2,tana=√3
90度
sina=1,cosa=0,tana不存在
120度
sina=√3/2,cosa=-1/2,tana=-√3
150度
sina=1/2,cosa=-√3/2,tana=-√3/3
180度
sina=0,cosa=-1,tana=0
270度
sina=-1,cosa=0,tana不存在
360度
sina=0,cosa=1,tana=0
不太常用的三角函数值(黄金三角形)α=18°(π/10)sinα=(√5-1)/4cosα=√(10+2√5)/4tαnα=√(25-10√5)/5
cscα=√5+1secα=√(50-10√5)/5cotα=√(5+2√5)
α=36°(π/5)sinα=√(10-2√5)/4cosα=(√5+1)/4tαnα=√(5-2√5)
cscα=√(50+10√5)/5secα=√5-1cotα=√(25+10√5)/5
α=54°(3π/10)sinα=(√5+1)/4cosα=√(10-2√5)/4tαnα=√(25+10√5)/5
cscα=√5-1secα=√(50+10√5)/5cotα=√(5-2√5)
α=72°(2π/5)sinα=√(10+2√5)/4cosα=(√5-1)/4tαnα=√(5+2√5)
cscα=√(50-10√5)/5secα=√5+1cotα=√(25-10√5)/5
通过比较可发现与黄金三角形相关的三角函数值有很强的对称性
这些数值的证明可以借助黄金三角形中的比例